
Coherent Metropolis Light Transport on the GPU using
Speculative Mutations

Martin Schmidt

martin.schmidt@uni-
bayreuth.de

Oleg Lobachev
University Bayreuth,

AI5: Visual Computing
Universitätsstr. 30

95447 Bayreuth, Germany
oleg.lobachev@uni-

bayreuth.de

Michael Guthe

michael.guthe@uni-
bayreuth.de

ABSTRACT
The Metropolis Light Transport algorithm generates physically based images with superior image quality than
classical ray tracing. Although it is trivially parallelizable on GPUs by running N MLTs, the performance on
current graphics hardware is below par. One of the main problems is the set of incoherent paths due to the inde-
pendent Markov chains. Since each MLT generates full paths and mutates them sequentially, we construct totally
incoherent rays which in negatively affects the performance on the GPU. By using a novel speculative variant of
the Metropolis algorithm we increase the similarity of paths and achieve higher coherence. This decreases the
computation time significantly. Further, we improve memory access by optimizing the data layout to better utilize
coalesced access.

Keywords
global illumination, parallel algorithms, markov chain monte carlo

1 INTRODUCTION
Todayâs standards in generation of high-quality images
are based on ray tracing methods. Classical ray trac-
ing [Kaj86] and its extensions have the ability to gener-
ate high-quality images with physically correct lighting
and shading. Due to the algorithms nature, only visible
results are calculated. In contrast to brute-force raster-
ization approaches, Ray tracing depends only logarith-
mically on scene complexity [WPS+03].

The emergence of massively parallel computing de-
vices with commodity graphics hardware has led to
increased research in the field of real-time raytracing.
Modern GPUs can handle several hundred threads si-
multaneously. Since several years, the performance of
commodity hardware (e.g. Desktop PCs) is suitable
enough for real-time raytracing approaches [RSH05].

Extending classical ray tracing, the path tracing ap-
proach leads to significant improvements of visible im-
age quality due to its physically-based rendering ap-
proach. Especially bi-directional path tracing and the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Equal time comparison (10 minutes) of
our speculative Metropolis Light transport (top) with
a naive parallelization (bottom) running on a GeForce
GTX Titan. The error images denote high errors in red,
medium in green and low in blue. Our approach clearly
improves the convergence rate and reduces the overall
error. The image was generated with a speculative tree
depth of three.

Metropolis Light Transport (MLT) algorithm have build
upon the ray tracing idea [Vea97, VG97]. These tech-
niques behave highly parallel due to the independent
nature of simultaneously traceable rays [PH10].

We show that the one of the main problems of MLT
on the GPU, the highly incoherent path samples, can
be mitigated by a different parallelization strategy. In
addition to performing N independent MLTs, we pro-
pose a speculative mutation algorithm. This reduces the

overall incoherence of candidate paths and leads to a
reduced divergence and better memory access patterns
inside the warps and therefore a higher overall perfor-
mance.

Figure 1 shows an equal time comparison on a GeForce
GTX Titan after 10 minutes with a resolution of 1920×
1080. For the speculative MLT, a tree depth of 3 was
used. The overall convergence rate is improved not only
by the fact that more mutations per pixel are performed,
but also since each Markov process performs three steps
in a single iteration.

The main contribution of this paper is an efficient par-
allelization of the MLT algorithm on the GPU using
CUDA. In the following, we review existing work in
the area of GPU-based real-time ray and path tracing
(chapter 2), give a short recap on classical MLT (chap-
ter 3), describe how the MLT can be parallelized using
speculative mutations (chapter 4 and 5), show results
from our experiments (chapter 6) and give a short out-
look on limitations and further possible improvements
(chapter 7).

2 RELATED WORK
With the advent of programmable graphics chips,
global illumination algorithms were implemented
on the GPU. The first GPU-based path tracer was
published in 2002 by Purcell et al. [PBMH02]. Much
work has been done since these times, including topics
like efficient ray traversal [AL09, AK10, Gut14] and
ray compaction or sorting [GL09].

Implementing the path tracing algorithm on the GPU
has lead to new problems. Since path tracing, Bi-
Directional Path Tracing and the Metropolis Light
Transport (MLT) make use of Monte Carlo sam-
pling methods, their behavior is stochastic in nature.
Stochastic sampling lets rays terminate after different
path lengths and therefore leads to incoherencies in the
workload of each SM on the GPU. This was partially
solved by restarting terminated rays [NHD10]. Inco-
herent branching and memory access lead to reduced
performance on modern GPU hardware [ALK12].

Segovia et al. analyzed possibilities to adapt the MLT
algorithm for SIMD execution on general purpose
CPUs [SIP07]. They found out that proposing multiple
sub path mutations at once during the mutation step
increased parallel SIMD execution feasibility. They
implemented the Multiply-Try Metropolis algorithm
(MTM) [LLW00] to generate a bunch of m mutation
candidates during the mutation step for a given MLT
sample. These candidates form sub paths for the sam-
pled MLT path that are highly coherent. On the GPU
this might also look promising since tracing coherent
rays better utilizes the current hardware architecture
[ALK12]. The time required per mutation however
doubles due to the additional reference set. In addition,

each of these paths only contributes a smaller fraction
to the image, i.e. 1

m on average.

The traditional MLT implementation, described by
Veach [Vea97, VG97], directly mutates the path
vertices. While this might seem straightforward, the
implementation is very complicated. Therefore, Kele-
men et al. [KSKAC02] proposed to define the Markov
process in terms of the random numbers that would be
used in bi-directional path tracing. Despite importance
sampling, this approach produces images with slightly
lower quality than the original MLT. An alternative
strategy is described by Hachisuka et al. [HKD14].
By combining Markov Chain Monte Carlo (MCMC)
sampling with Multiple Importance Sampling (MIS),
they further decrease variance and achieve results of
similar or even better quality than the original MLT.
In our work, we use this combination as it has several
advantages due to the way it generates samples.

3 METROPOLIS LIGHT TRANSPORT
The original Metropolis Light Transport algorithm
[Vea97] extends the idea behind bi-directional path
tracing (BDPT). It connects paths between light
sources and the virtual camera lens to calculate the
energy that flows between the light source and the
objects and eventually reaches the virtual sensor. While
this approach is similar to BDPT, the way paths are
generated is different.

MLT first generates a path x that starts at the light
source. The path then is extended by a series of ver-
tices x0,x1, . . . ,xk for a length k ≥ 1 [VG97]. Each ver-
tex lies on an arbitrary surface and receives energy from
the light source through the path. The exact direction
for a new path segment is calculated using Monte Carlo
sampling. Once a path that successfully connects the
light source and the virtual sensor is found, it serves as
a starting point for random path mutation.

During path mutation, the algorithm generates a
Markov chain of path mutations X0,X1, . . . ,X i. Each
mutation X i is the result of a random walk permutation
of one of the vertices of the direct predecessor X i−1.
The mutation strategy only uses the direct predecessor
as a start for the next mutation, ignoring all earlier
mutations. Each new mutation is the result of a
Metropolis-Hastings sampling in local path space.

For each mutation X ′i, an acceptance probability func-
tion a(y|x) evaluates the chance that y will be X ′i if
x = X i−1. If X ′i is accepted, it becomes X i, otherwise
X i−1 will be kept.

After the mutation has finished (either with acceptance
or not), the contribution of the new path is calculated
and added to the corresponding pixel in the image
plane. Each pixel is sampled by a number of n
mutations, with example values of 250 [VG97].

The main advantage of the MLT is the local behavior
of the mutations. Once a path with a certain contri-
bution has been sampled, each mutation will at first
be in the neighborhood of the original path. This in-
creases performance and quality for problematic scenes
where light has to travel mostly indirect, for example
the Sponza scene where the light source is outside the
atrium and only can enter through the open ceiling.

When trying to implement a parallel MLT algorithm,
the main problem of the classical MLT is the fact that it
randomly walks through path space. So when running
N MLTs in parallel, they usually sample completely dif-
ferent areas of the path space at each point in time. This
is especially problematic for GPU-based implementa-
tions as coherent processing is critical to maintain high
performance [AL09].

3.1 Primary Sampling Space MLT
Kelemen et al. [KSKAC02] proposed a novel muta-
tion strategy for MLT path mutation that operates in the
primary sampling space (PSSMLT). The basis is a bi-
directional path tracer for which the random numbers
are generated by a Markov chain. Thus the state itself
is a set of random numbers that were used to gener-
ate the path. This can be seen as a single point ui in a
high dimensional – or possible infinitely dimensional –
space. The mapping is shown in Figure 2.

���

���

�����

�����

Figure 2: Primary sampling space MLT. Every multi-
dimensional sampling point ui is mapped to a path X i.
Similar points map to similar paths.

Mutations are thus simply local or global movements
of this point, where large changes – i.e. generating new
random numbers – correspond to the original BDPT.
This has three advantages. First, any multi-dimensional
random number produces a valid path, where directly
changing the path vertices often produces invalid paths.
Second, similar sample points produce similar paths
which can be used to control the magnitude of path
change. And finally, the mutations can easily be made
symmetric which removes one of the more complicated
terms for computing the acceptance probability.

While all these significantly ease the implementation
and reduce the memory that is needed to store the path
information, the resulting quality is slightly lower than
that of the original MLT. One of the reasons is that
BDPT connects the eye and light path at all vertices.
In combination with the fact that very often the ver-
tices at the end of the eye and light subpath cannot be

connected, this means that the same contribution would
have been made by a shorter path that had required less
computation time.

3.2 Multiplexed MLT
An improvement of this approach is the Multiplexed
MLT (MMLT), where the mapping from the random
numbers to path space is not unique. Instead of con-
necting all vertices, only the end points of the eye and
light path are connected. For a fixed path length of k,
there are thus k + 2 possible mappings of the random
numbers to a path. The eye path length needs to be
chosen between 0 to k + 1 vertices and the light path
contains the remaining vertices. This is done using a
tempering parameter t that is also selected using the
same Markov chain as for the random numbers. The
mapping from (u, t)i to X i is shown in Figure 3.

���

��, � �

��, � ���

�����

Figure 3: Multiplexed MLT. An additional tempering
parameter t is used to determine the length of the eye
and light subpath. Only the end points are connected.

In contrast to the PSSMLT, every edge that was traced
is used to calculate the contribution. If the end points
cannot be connected, e.g. because one of the surface
normals points away from the connecting edge, the path
contribution becomes zero. This means that such a path
is never accepted and the MLT continues its search from
the previous path X i−1 that had a contribution. The
same holds for a path with occluded connecting edge.
Thus mostly paths where every edge transports energy
are sampled. This means that the number of unnec-
essarily traced rays is reduced compared to PSSMLT.
In the end, the method produces results that are com-
petitive with the original MLT with respect to peak
signal noise ratio. The simple mapping from multi-
dimensional points to valid paths has however a signif-
icant advantage as we will discuss in the following.

3.3 Problem Statement
Both of these approaches share the property that sim-
ilar random numbers generate similar paths. Thus the
coherence between neighboring threads that handle dif-
ferent Markov chains can be increased if they are based
on similar random numbers. Simply using N indepen-
dent Markov chains however leads to samples that are
distributed throughout the sampling space.
One possibility would be to sort the paths according to
their random numbers but this adds a significant over-
head that is not easily alleviated by the improved co-
herency. Using Multiple-Try mutations also generates

similar paths but adds the overhead of generating a ref-
erence set and reduces the contribution of each path.
If m tries are generated, the contribution of each is ex-
pected to be 1

m . Another possibility would be to gener-
ate a set of mutations from the current state and succes-
sively test them until the first one is accepted [BJB10].
While this reject chain (RC) sampling is a good strategy
for Markov Chains with low acceptance probability, all
MLT variants try to achieve an acceptance rate close to
1.

If we use a PSSMLT or MMLT, the mutation itself does
not depend on the actual path but only on the random
numbers that define it. Thus we can generate more than
a single mutation – and their corresponding paths – in
parallel. Instead of only sampling the reject chain, we
can sample all possible paths up to a depth of d.

4 SPECULATIVE MLT
The main idea behind the speculative MLT (SMLT) is
to simultaneously and speculatively evaluate possible
mutations from a candidate set. To this end, we need
to perform three steps: First, we generate the sampling
points in primary space. Then we evaluate the corre-
sponding paths. Finally, we accumulate the contribu-
tions and choose the final candidate.

Performing all possible mutations up to a given depth d
produces a binary tree of candidates. As global muta-
tions completely change the sampling points in primary
space, we only allow them as first mutation of the lo-
cal tree. All other mutations are always local ones that
produce similar paths. Details on the parallel imple-
mentation are discussed in section 5.1.

Then we trace the paths to compute their transported en-
ergy, probability and weight as discussed in [HKD14].
From this we can compute the local acceptance proba-
bility a(Xb|Xa) for each mutation from Xa to Xb. For a
single mutation step starting at X i−1, we then have the
following iteration:

X i =

{
X ′i : a(X ′i|X i−1)

X i−1 : 1−a(X ′i|X i−1)
(1)

When extending the local mutation tree to a depth of
2, we also need to consider the two possible mutations
from X i−1 to X1

i+1 and from X ′i to X2
i+1. If a1 denotes

the acceptance probability from X i−1 to X i, a2
1 from

X i−1 to X1
i+1 and a2

2 from X ′i to X2
i+1, we can write the

total acceptance probabilities as:

p(X i−1) = (1−a1) · (1−a2
1)

p(X1
i+1) = (1−a1) ·a2

1
p(X i) = a1 · (1−a2

2)

p(X2
i+1) = a1 ·a2

2

(2)

Note that these always sum up to Σp = 1. Equation 2
is illustrated in Figure 4. For larger trees, the probabil-
ity for each candidate is the product of all accept/reject
probabilities from the root down to the leaf level.

 𝑋𝑖−1

1 − 𝑎1
1(𝑋𝑖−1 → 𝑋𝑖) 𝑎1

1(𝑋𝑖−1 → 𝑋𝑖)

 𝑋𝑖−1
 𝑋𝑖

 𝑋𝑖
 𝑋𝑖+1
1 𝑋𝑖+1

2 𝑋𝑖−1

1 − 𝑎1
2(𝑋𝑖−1 → 𝑋𝑖+1

1) 1 − 𝑎2
2(𝑋𝑖 → 𝑋𝑖+1

2)

𝑎1
2(𝑋𝑖−1 → 𝑋𝑖+1

1) 𝑎2
2(𝑋𝑖 → 𝑋𝑖+1

2)

Figure 4: Mutation tree and acceptance probabilities for
a mutation depth of d = 2.

Although we have a candidate set of 2d samples, we
only need to trace the path for 2d − 1 of them. X i−1
is the first-chance rejection and therefore still the same
path as the result from the last iteration. By increasing
the size of the candidate set, we perform d iterations
in parallel on a set of ∼ N

2d−1 MLTs. So in addition to
more efficient tracing, we also expect a lower start-up
bias and faster convergence to the stationary distribu-
tion.

4.1 Variance reduction
Similar to previous methods [VG97, HKD14], we
want to minimize the variance of the generated image.
Therefore, we accumulate the expectation value of all
candidates instead of the chosen path only.

In contrast to computing the acceptance probability, we
need however not only consider the leaf level of the tree
as this would mean to skip all iterations except the last
one. Instead, we calculate the contribution at each level
of the tree, except the root node which was already ac-
cumulated in the last step. In our example with a depth
of 2, the contribution weight w for each path is:

w(X i−1) = (1−a1) · (2−a2
1)

w(X1
i+1) = (1−a1) ·a2

1
w(X i) = a1 · (2−a2

2)

w(X2
i+1) = a1 ·a2

2

(3)

Node that these always sum up to Σw = d, which is 2
in this example. Like in this example, the equations for
deeper trees are similar to the acceptance rates. The
only difference is that – with the exception of a1 as dis-
cussed before – all (1−ai

j) become (2−ai
j).

5 IMPLEMENTATION WITH CUDA
For the implementation of the speculative MLT, we ex-
tended our existing MMLT implementation in CUDA.

The general process per iteration can be subdivided into
the following parts: First, we generate the candidate
mutations for the given depth d. Then we trace all new
paths. Finally, we compute the contributions and select
the surviving paths.

5.1 Mutation
The mutation step computes one candidate per thread.
From each current path p, we generate a set of 2d − 1
candidates. Each thread loops over the variables of p
in the primary sampling space. For each variable i, we
first load the corresponding one from p. By arranging
the variables in the path buffer at position p+ i ·N, we
access them with a stride of 1 and partial broadcasts.

Then each thread generates a random number represent-
ing the last mutation of variable i. To apply the muta-
tion to all relevant candidates, this number is stored in
shared memory. Starting from the first mutation, they
are applied to all relevant candidates per level using the
original mutation strategy [KSKAC02]. For all muta-
tions except the last one, the random number is fetched
from shared memory. Note that this is similar to a re-
duction using a binary tree in shared memory. The
only difference is that the accumulation is performed
towards the leaves and not towards the root. Figure 5
shows this process for an example depth of 2. Finally,
the new sampling space variables are again stored with
stride 1 access in the larger candidate buffer.

 𝑋𝑖−1

 𝑋𝑖−1
 𝑋𝑖

 𝑋𝑖
 𝑋𝑖+1
1 𝑋𝑖+1

2 𝑋𝑖−1

𝑇1 𝑇2 𝑇3

𝑀2,1 𝑀2,2

𝑀1,1

Figure 5: 3 threads are working on 3 mutations; muta-
tion depth of d = 2.

5.2 Tracing
After generating the candidates in primary sampling
space, we trace the paths using a ray scheduler based
on the wavefront path tracer [LKA13]. First all eye and
light segments are stored in a ray buffer. Then the in-
tersection points for these rays are determined using a
highly optimized trace kernel [Gut14]. The BRDF is
evaluated at the hit points and secondary rays are con-
structed based on the stored random numbers in the
candidate set. Finally, the shadow rays to connect the

path ends are constructed and again traced using the
same trace kernel.
While tracing will be divergent even for coherent paths,
ray construction is mostly non-divergent (except for
rays that exited the scene). Here again, the memory
layout of the candidate set leads to a coalesced stride 1
access into the candidate buffer.
Due to the ray restarting of the trace kernel, the perfor-
mance will gradually increase with the number of co-
herent rays. However, it will level once it reaches the
warp size of (currently) 32.

5.3 Selection
For selection, we could again start one thread per candi-
date and coordinate the work over shared memory. As
we still have a high amount of parallel MLTs, it is how-
ever more efficient to handle each selected path p with
its own thread.
While reading the sample state now has a stride of
2d − 1, the problem can be alleviated for the path con-
tribution. Each candidate path c stores RGB values
for the transported energy multiplied with the weight
from the balance heuristic [HKD14] and a pixel in-
dex for each pixel it contributes to. By combining
this data into a single float4, we only need a sin-
gle memory access and loose fewer bandwidth. The
pixel index is then accessed using the intrinsic func-
tions __int_as_float and __float_as_int.

6 RESULTS
We tested our implementation on an Intel Core i7-3720
quadcore CPU with 16 GB of RAM, paired with an
nVidia GeForce GTX Titan with 6 GB video memory.
As test cases we chose three scenes listed in table 1 to
evaluate different light transport scenarios.

Scene # Triangles # Vertices
Sponza 279,157 193,300
Sibenik 75,284 83,490
Conference 331,179 216,862

Table 1: Number of triangles and vertices per mesh.

Figure 6 shows the ground truth images of the views
we used for the evaluation. These images were gen-
erated using a bi-directional path tracer with 10 mil-
lion samples per pixel with a maximum of 10 bounces
and the pseudo-random Halton sequence. We added a
highly specular banner to the Sponza scene (cosine lobe
with an exponent of 105) to produce caustics and re-
flected caustics. These are especially visible in view 2.
The Sibenik cathedral is illuminated by the light shining
through the windows only, so only few paths contribute
to the image. This is even more the case in the final
example, the Conference scene. Here there is only indi-
rect light coming through the sunblind with at least two
bounces.

Figure 6: Scenes and views (ground truth images) used
in the evaluation. From left to right and top to bottom:
Sponza view 1, Sponza view 2, Sibenik and Confer-
ence.

Each scene was tested with the same view and a screen
resolution of 1920× 1080 for all of the methods. We
compared the naively parallelized MMLT with our
speculative MLT using different mutation depths and
the reject chain MLT using different chain lengths.
Table 2 shows the number of parallel MLTs N and
the total number of parallel mutations. For the mutate
kernel, we thus launch 1024 blocks with 248 to 256
threads.

MLTs (N) # mutations
naive 256 ·210 256 ·210

S2 85 ·210 255 ·210

S3 36 ·210 252 ·210

S4 17 ·210 255 ·210

S5 8 ·210 248 ·210

S6 4 ·210 252 ·210

RC2 128 ·210 256 ·210

RC4 64 ·210 256 ·210

RC8 32 ·210 256 ·210

RC16 16 ·210 256 ·210

RC32 8 ·210 256 ·210

RC64 4 ·210 256 ·210

Table 2: Number of parallel running MLTs and the
number of parallel mutations.

The results show an almost linear speedup with the
depth for our speculative parallelization, compared to
the naive approach of using independent MLTs. Ta-
ble 3 and Figure 7 show the linear growth of the per-
formance for both. The main reason for the speedup
is the increase in coherence that directly translates into
a higher trace performance. Once the set of coherent
paths grows beyond the warp size of 32, the perfor-
mance does not increase any more. This is as expected
since packets of at most 32 rays are fetched by the ray
tracer [ALK12].

In addition, we compare the peak signal noise ratio of
the generated images after rendering for 10 minutes in
Table 4. Depending on the scene characteristics, the

Sponza Sponza Sibenik Confe-
view 1 view 2 rence

naive 14.48 9.80 15.92 8.31
S2 15.61 10.44 16.40 8.90
S3 15.67 10.69 16.86 9.07
S4 15.87 10.86 17.11 9.47
S5 16.33 11.09 17.60 9.77
S6 16.42 11.10 17.63 9.78
RC2 15.49 10.36 16.41 8.68
RC4 15.84 10.98 17.51 9.19
RC8 16.89 11.40 18.18 9.65
RC16 17.66 11.99 18.38 10.19
RC32 17.67 12.39 19.24 10.63
RC64 17.76 12.53 19.36 10.64

Table 3: Million mutations per second for the naive par-
allelization, the speculative with depth d (Sd) and reject
chain with length l (RCl).

0%

5%

10%

15%

20%

25%

30%

1 2 4 8 16 32 64

Sponza view 1 SMLT

Sponza view 2 SMLT

Sibenik SMLT

Conference SMLT

Sponza view 1 RCMLT

Sponza view 2 RCMLT

Sibenik RCMLT

Conference RCMLT

Figure 7: Relative speedup of speculative MLT (SMLT)
and reject chain MLT (RCMLT) compared to naively
parallelized MMLT; on the x-axis are the sizes of can-
didate sets.

best results can be achieved with d = 2 (Sibenik, Con-
ference) to d = 3 (Sponza view 2). With increasing
depth, more paths are wasted and the quality gradually
drops. This is especially true for simple views, where
the acceptance probability is close to 1. In such cases,
e.g. view 1 of the Sponza scene, the naive paralleliza-
tion produces the best results. Note that the reject chain
approach never produces better images in the same time
than the naive one. This is due to the fact that the contri-
bution of the first additional candidates is almost always
below 1

4 and drops exponentially with further ones.

Figure 8 compares the generated images using the best
parallelization for each view with the naive approach.
The error and noise are especially reduced in difficult
cases. These are the reflected caustic in sponza view 2
and the indirect light illuminating the conference scene.
Note that for sponza view 2, neither of them has been
able to converge to the stationary distribution yet, so
the reflected caustic appears slightly too dark in both
images.

Sponza Sponza Sibenik Confe-
view 1 view 2 rence

naive 28.61 17.27 28.50 12.44
S2 28.47 17.90 28.60 12.50
S3 28.00 18.10 27.64 12.20
S4 27.84 17.88 26.19 11.62
S5 27.56 17.72 24.80 11.09
S6 27.17 17.33 23.29 10.38
RC2 28.29 17.09 26.03 11.59
RC4 26.21 16.43 23.13 10.73
RC8 20.50 15.12 20.24 9.90
RC16 18.76 14.35 17.63 9.10
RC32 17.95 13.99 15.91 8.43
RC64 17.27 14.00 15.45 7.93

Table 4: Peak signal noise ratio comparison of differ-
ent parallelization strategies after rendering 10 minutes.
The best is marked in bold.

Figure 9 shows an equal time comparison for specula-
tive tree depths from 1 (naive) to 6. While the error
in the reflected caustic is decreasing with higher tree
depth, the overall error increases due to the decreasing
weights of deeper paths. This clearly shows that deeper
trees are suitable for paths that are difficult to sample.

7 CONCLUSION AND LIMITATIONS

We have proposed a novel approach for parallelizing the
Metropolis Light Transport algorithm on the GPU. Our
approach successfully utilizes the graphics hardware to
achieve a substantial speedup compared to naively par-
allelized MLT. This is mostly accomplished by evalu-
ating paths that are more coherent. This shows signif-
icantly better performance on GPUs where divergence
in both execution and memory access imposes a severe
penalty.

While our approach could be extended to other
Metropolis sampling algorithms, it requires that the
sample generation and evaluation can be decoupled.
This means that it must be possible to generate the
candidate X ′i without having evaluated the previous
sample X i−1. Therefore, our approach cannot be
applied to the original MLT algorithm where the path
is mutated directly.

Another problem of our approach is that the contribu-
tion of a sample exponentially decreases with the depth.
This leads to an optimal depth of 2 or 3 which in turn
only generated 3 or 7 coherent samples. On the other
hand, paths that are difficult to sample – like reflected
caustics – are better handled with a depth of 5 or even 6,
i.e. 31 or 63 coherent samples. In the future we there-
fore plan to evaluate other sampling strategies to gener-
ate larger sample sets without reducing the contribution
of some paths.

Figure 8: Equal time comparison (10 minutes on a
GeForce GTX Titan) using the naive parallelization
(upper image) and the best method for each (lower
image). The chosen method from top to bottom is:
naive, S3, S2 and S2 (c.f. Table 4). The error images
show high errors in red, medium in green and low in
blue/black.

8 REFERENCES
[AK10] T. Aila and T. Karras. Architecture considera-

tions for tracing incoherent rays. In Proceedings
of High-Performance Graphics 2010, pages 113–
122, 2010.

[AL09] T. Aila and S. Laine. Understanding the effi-
ciency of ray traversal on gpus. In Proceedings
of High-Performance Graphics 2009, pages 145–
149, 2009.

[ALK12] T. Aila, S. Laine, and T. Karras. Under-

Figure 9: Sponza view 2 with different speculative tree
depth d increasing from 1 (naive) to 6. All images were
generated in 10 minutes on the GeForce GTX Titan.

standing the efficiency of ray traversal on GPUs
– Kepler and Fermi addendum. NVIDIA Techni-
cal Report NVR-2012-02, NVIDIA Corporation,
June 2012.

[BJB10] J. Byrd, S. Jarvis, and A. Bhalerao. On the
parallelisation of mcmc by speculative chain exe-
cution. In Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pages 1–8, April
2010.

[GL09] K. Garanzha and C. Loop. Fast ray sorting
and breadth-first packet traversal for gpu ray trac-
ing. Computer Graphics Forum, 29(2):289–298,
2009.

[Gut14] M. Guthe. Latency considerations of depth-
first gpu ray tracing. In Proceedings of Euro-
graphics 2014 - Short Papers, pages 53–56, 2014.

[HKD14] T. Hachisuka, A. S. Kaplanyan, and
C. Dachsbacher. Multiplexed metropolis light

transport. ACM Trans. Graph., 33(4):100:1–
100:10, July 2014.

[Kaj86] J. T. Kajiya. The rendering equation. In SIG-
GRAPH ’86 - Proceedings of the 13th annual
conference on Computer graphics and interactive
techniques, 1986.

[KSKAC02] C. Kelemen, L. Szirmay-Kalos, G. An-
tal, and F. Csonka. A simple and robust mutation
strategy for the metropolis light transport algo-
rithm. Computer Graphics Forum, 21(3):531–
540, 2002.

[LKA13] S. Laine, T. Karras, and T. Aila. Megaker-
nels considered harmful: Wavefront path tracing
on gpus. In Proceedings of High-Performance
Graphics 2013, 2013.

[LLW00] J. S. Liu, F. Liang, and W. H. Wong. The
multiple-try method and local optimization in
metropolis sampling. Journal of the American
Statistical Association, 95(449):121–134, 2000.

[NHD10] J. Novák, V. Havran, and C. Dachsbacher.
Path regeneration for interactive path tracing. Pro-
ceedings of Eurographics 2010 - Short Papers,
pages 61–64, 2010.

[PBMH02] T. J. Purcell, I. Buck, W. R. Mark, and
P. Hanrahan. Ray tracing on programmable graph-
ics hardware. In Proceedings of ACM SIGGRAPH
2002, pages 703–712, 2002.

[PH10] M. Pharr and G. Humphreys. Physically Based
Rendering, Second Edition: From Theory To Im-
plementation. Morgan Kaufmann Publishers Inc.,
2nd edition, 2010.

[RSH05] A. Reshetov, A. Soupikov, and J. Hurley.
Multi-level ray tracing algorithm. ACM Transac-
tions on Graphics, 24(3):1176–1185, July 2005.

[SIP07] B. Segovia, J.-C. Iehl, and B. Péroche. Coher-
ent Metropolis Light Transport with Multiple-Try
Mutations. Technical report, LIRIS UMR 5205
CNRS/INSA de Lyon/Université Claude Bernard
Lyon 1/Université Lumière Lyon 2/École Centrale
de Lyon, April 2007.

[Vea97] E. Veach. Robust Monte Carlo methods for
Light Transport Simulation. PhD thesis, Stand-
ford University, 1997.

[VG97] E. Veach and L. J. Guibas. Metropolis light
transport. In SIGGRAPH ’97 - Proceedings of
the 24th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’97,
pages 65–76, 1997.

[WPS+03] I. Wald, T. J. Purcell, J. Schmittler, C. Ben-
thin, and P. Slusallek. Realtime ray tracing and
its use for interactive global illumination. Euro-
graphics State of the Art Reports, 2003.

